Inner Product of Eigenfunctions over Curves and Generalized Periods for Compact Riemannian Surfaces
نویسندگان
چکیده
منابع مشابه
Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary
The purpose of this paper is to prove the L∞ gradient estimates and L∞ gradient estimates for the unit spectral projection operators of the Dirichlet Laplacian and Neumann (or more general, Ψ1-Robin) Laplacian on compact Riemannian manifolds (M, g) of dimension n ≥ 2 with C2 boundary . And we also get an upper bounds for normal derivatives of the unit spectral projection operators of the Dirich...
متن کاملNodal Length of Steklov Eigenfunctions on Real-analytic Riemannian Surfaces
We prove sharp upper and lower bounds for the nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces with boundary. The argument involves frequency function methods for harmonic functions in the interior of the surface as well as the construction of exponentially accurate approximations for the Steklov eigenfunctions near the boundary.
متن کاملVertices of Closed Curves in Riemannian Surfaces
We study the relation between the topology of a complete Riemannian surface M and the minimum number of vertices, i.e., critical points of geodesic curvature, of closed curves in M . In particular we show that the space forms with finite fundamental group are the only surfaces in which every simple closed curve has more than two vertices. Further we characterize the simply connected space forms...
متن کاملGraph product of generalized Cayley graphs over polygroups
In this paper, we introduce a suitable generalization of Cayley graphs that is defined over polygroups (GCP-graph) and give some examples and properties. Then, we mention a generalization of NEPS that contains some known graph operations and apply to GCP-graphs. Finally, we prove that the product of GCP-graphs is again a GCP-graph.
متن کاملLipschitz classification of almost-Riemannian distances on compact oriented surfaces
Two-dimensional almost-Riemannian structures are generalized Riemannian structures on surfaces for which a local orthonormal frame is given by a Lie bracket generating pair of vector fields that can become collinear. We consider the Carnot–Caratheodory distance canonically associated with an almost-Riemannian structure and study the problem of Lipschitz equivalence between two such distances on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Geometric Analysis
سال: 2018
ISSN: 1050-6926,1559-002X
DOI: 10.1007/s12220-018-0089-0